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ABSTRACT

The joint e�ect of gravity and thermal misbalance on the dynamics of acoustic-gravity waves (AGW) in the solar atmosphere
is considered. It is shown that the heating and cooling taken in the form of power functions lead to the linear dependence
of stationary temperature profile. Estimates of the ratio of the characteristic length associated with thermal processes to the
gravitational height show a predominant influence of thermal processes in the temperature range up to 2 MK and a comparable
influence on the dynamics of AGW in the range from 2 to 10 MK. A study of the dispersion properties of AGW in an isothermal
atmosphere showed that in regimes with an overwhelming influence of thermal processes, the acoustic cut-o� frequency decreases
up to

p
W times. At the same time, the maximum frequency of the gravitational mode (analog of the Brunt–Väisälä frequency

in the medium without non-adiabatic heating and cooling) decreases with increasing power of thermal processes, and then the
gravitational mode can become purely oscillatory.
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1 INTRODUCTION

Solar atmosphere is the natural plasma physics laboratory, which
allows various oscillatory and wave motions to be observed and ana-
lyzed. One of the main advantages of such a laboratory is the number
of wave modes for interpretation. These waves are oscillating over a
wide range of periods and can be observed in the di�erent regions
of the solar atmosphere. In particular, the 5-minute oscillations are
routinely observed in the photosphere. Such oscillations are inter-
preted as global standing acoustic waves (Gizon & Birch 2005). The
chromosphere is dominated by the 3-min oscillations (Sych et al.
2012) that can be explained by two main mechanisms: a chromo-
spheric cavity (or resonator) (Botha et al. 2011) and oscillations at
the acoustic cut-o� frequency (Fleck & Schmitz 1991). In the up-
per layers of the solar atmosphere, the observed wave periodicity
generally varies from minutes to tens of minutes (Nakariakov et al.
2019). The density perturbations with periods of about an hour and
several hours (Auchère et al. 2014; Viall & Vourlidas 2015) have
been indicated in the upper corona and in the solar wind.

Another advantage of such a natural laboratory is the presence
of a quite diverse set of processes a�ecting the wave dynamics and
their dispersion properties. Some of the most important processes
are magnetic field, gravity, and non-adiabatic processes (heating,
cooling, and thermal conduction). Their characteristic spatial and
temporal scales vary independently in the wide range of values. Due
to this fact, not only one, but some combination of dispersion sources
can a�ect magnetoacoustic (MA) waves.

¢ E-mail:ryashchikovd@gmail.com

The magnetic field is of special importance in the upper layers of
the solar atmosphere. It provides the long-living existence of various
magnetic structures like coronal loops, plumes, and prominences,
which play the role of the waveguides for MA modes (see, e.g.,
Nakariakov & Kolotkov 2020; Banerjee et al. 2021, for recent re-
views). The wave-guiding dispersion connected with the field-aligned
filamentation was originally investigated by Zaitsev & Stepanov
(1975, 1982) and Edwin & Roberts (1983). Nowadays, the results
of this theory are actively used for interpretation of the observational
data. Furthermore, MHD-theory allows to use the slow (Wang et al.
2021) and fast (Nakariakov et al. 2021; Li et al. 2020) MA waves as
a diagnostic tool for analysis the coronal plasma parameters.

The problem of gravitational stratification e�ect on dispersion
properties of compressional waves was initially raised in the context
of waves in the Earth’s atmosphere (Lamb 1932). It turns out that
stratification introduces a very specific mode, namely, the gravity
wave (GW), which has no possibility for vertical propagation in the
atmosphere. As regards the astrophysical plasma, interest in GW was
manifested in order to explain the uniform rotation of the solar core
(Gough 1997). These waves were also considered as a source of the
mechanical heating of stellar atmospheres and corona (Mihalas &
Toomre 1981). Due to the lack of direct observations, their contribu-
tion is usually neglected. However, analysis conducted by Straus et al.
(2008) reveals that the low-frequency atmospheric gravity waves are
energetically more important for the lower solar atmosphere than
high-frequency acoustic waves.

It is a well-known fact that gravitational stratification limits the
spectrum of vertically propagating waves introducing so-called cut-
o� frequency for acoustic perturbations. It can also cause the spread-
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2 D. S. Riashchikov et al.

ing and appearance of the trailing oscillatory wake for broadband
pulses. As we have mentioned previously, this e�ect is of great im-
portance for the chromospheric oscillations (Fleck & Schmitz 1991;
Sych et al. 2012). Moreover, the cut-o� e�ect is also actively stud-
ied in the context of perturbations in the upper solar corona and in
the solar wind. The density structures with the periods lying in the
range of 65–100 min and characteristic timescale of ⇠ 90 min has
been indicated in the solar wind at 1 AU by Viall et al. (2010); Viall
& Vourlidas (2015). The waves with the same characteristic period,
detected at a distance of 2.5-15 solar radii, were indicated by Pylaev
et al. (2017). It has been proposed that standing shock at the 90 min
acoustic cut-o� period of the corona drives reconnection and induces
these density perturbations observed in the solar wind (see Pylaev
et al. 2017, for details). In the case of purely vertical propagation of
acoustic modes in a medium with an arbitrary background temper-
ature profile, the evolution of waves can be described by the Klein-
Gordon equation. Such an approach was applied by Roberts (2006) to
describe the evolution of MA waves in the stratified atmosphere pen-
etrated by a uniform vertical magnetic field. Furthermore, applying
the similar approach, Afanasyev & Nakariakov (2015) showed with
the help of the derived evolutionary equation that the cut-o� period
can vary with height and significantly decrease in the exponentially
divergent magnetic flux tube with low-beta plasma. The

The solar atmosphere is also known as the non-adiabatic plasma.
In such a medium, the waves are a�ected not only by dissipative
processes like thermal conduction or viscosity, but also by tempera-
ture and density dependent radiative cooling (Dere et al. 1997; Del
Zanna et al. 2021) and heating processes (Rosner et al. 1978a; Car-
bonell et al. 2006). In fact, the compression perturbation can disturb
the balance of heating/cooling processes allowing the feedback be-
tween the plasma and the wave to take place. In the solar physics
community, this feature is known as the so-called thermal misbal-
ance (see, e.g., Kolotkov et al. 2021; Prasad et al. 2021, 2022; Belov
et al. 2020). This feedback may a�ect the perturbation in a variety of
ways including the dispersion of phase and group speeds (Zavershin-
skii et al. 2019, 2016), wave amplification or attenuation (Kolotkov
et al. 2020), additional phase shift between perturbations of various
plasma parameters, etc. (see, e.g., Zavershinskii et al. 2021; Prasad
et al. 2021, 2022, for details). The constructed theory of thermal mis-
balance allows to introduce the relation between the parameters of
waves (which can be observed) and coronal heating rate. Assuming
the heating rate to be a power-law function of plasma density and
temperature (� (d,)) ⇠ d0)1), one may obtain some constraints on
power indices 0, 1 and thereby narrow the set of possible forms of the
heating function (see, e.g., Kolotkov et al. 2020; Van Doorsselaere
et al. 2020; Kolotkov & Nakariakov 2022).

The combination of gravitational and magnetic e�ects on the evo-
lution of compressional perturbations has been analyzed both analyti-
cally and numerically (see, e.g., Kra�kiewicz et al. 2019; Kra�kiewicz
& Murawski 2019). In turn, the analysis of the combined e�ect of
gravity and non-adiabatic processes is mostly limited to numerical
models (Murawski et al. 2020; González-Avilés et al. 2021). In our
paper, we will try to contribute to solving the problem of the lack of
analytical models and make some predictions, which we believe can
find their application in the interpretation of both observational data
and numerical modelling results.

Our paper is organized in the following way. In Section 2, we dis-
cuss the basic equations and used assumptions. Further, in Section 3,
we describe the stationary state in the thermally active plasma and
introduce possible height profiles of plasma parameters. Section 4
is devoted to the waves in the isothermal gravitationally stratified
plasma with the thermal misbalance. In Subsection 4.1, we introduce

the dispersion relation for the AGW. Further, we show the temper-
ature ranges, where the thermal misbalance impact on compression
waves is comparable to or greater than the gravity e�ects (see Sub-
section 4.2). We describe how thermal misbalance a�ects the cut-o�
period and dispersion properties of AGW in Subsection 4.3. Finally,
the discussion and conclusions are presented in Section 5.

2 MODEL

In our study, we will consider a fully-ionized gravitationally stratified
plasma, and take into account the influence of heating and radiative
cooling.

One of the main focuses of our research is the analysis of slow
MA waves guided along a magnetic field in coronal loops. The evo-
lution of these modes in the general case can be described using the
classic approach introduced by Zaitsev & Stepanov (1982); Edwin
& Roberts (1983). In the case of thin coronal tubes, one may apply
second-order thin flux tube approximation (Zhugzhda 1996). The
latter approach allows us to describe wave-guiding dispersion in a
simpler way, without using hyperbolic and special functions. How-
ever, in the highly magnetized plasma, the wave-guiding dispersion
prescribed by the magnetic structuring becomes su�ciently weak.
In particular, well-known tube speed frequently associated with the
slow-wave phase speed and applied for seismological needs (Wang
et al. 2007; Jess et al. 2016) is equal to sound speed under such
conditions. In this case, the influence of the magnetic field on the
dispersion properties of slow waves is rather weak, and their evolu-
tion can be described by the system of hydrodynamic equations with
su�ciently high accuracy. Such an approach is known as infinite
magnetic field approximation. It has demonstrated its e�ectiveness
for the description of slow waves in coronal loops (Nakariakov et al.
2000; Owen et al. 2009; Wang et al. 2015; Zavershinskii et al. 2019;
Prasad et al. 2021, 2022) and also in stellar loops (Reale et al. 2018;
Lim et al. 2022). Subject to some restrictions on the radiative loss
function (Athay 1986), a similar system of initial equations can be
applied to describe acoustic waves in the chromosphere (Ashfield &
Longcope 2021; Longcope 2014). Our interest is the chromospheric
regions with the plasma beta V � 1 and V ⌧ 1 (see calculated
values of plasma beta function at heights from 0.25 Mm to 2.5 Mm,
shown in Figure 1 in Bourdin (2017) and Figure 3 in Gary (2001) ),
where the influence of the magnetic field on the behavior of acoustic
(V � 1) and slow (V ⌧ 1) waves can be neglected. In the calcu-
lations that will be presented in Section 4.3, we will also look at
photospheric parameters. We note, however, that these calculations
will be of an illustrative nature. Since the assumption that radiation
losses in the photosphere can be modelled by optically thin radia-
tion is rather rough. The purpose of the calculations for this domain
will be to show the importance of radiation transfer processes, in the
context of acoustic wave evolution.

With the foregoing as background, the fundamental equations in
the considered model are:

md

mC
+ r · (dv) = 0 , (1)

d
Dv
DC

= �r% + dg, (2)

⇠+
D)
DC

� :B)

<d

Dd

DC
= �&(d,)) + 1

d
r (^r)) , (3)
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% =
:B

<
d) . (4)

In Equations (1) – (4), d, ) , and % means the density, temperature,
and pressure of the plasma, respectively. Vectors v and g are the
plasma velocity and the gravitational acceleration, ^ is the thermal
conduction coe�cient. The coe�cient ^ is assumed to be constant
in the scope of this work. The Boltzmann constant and the mean
mass per volume are respectively shown by :B and <. In addition,
⇡/⇡t = m/mC + v · r stands for the convective derivative.

In our analysis, we will use the Cartesian coordinate system x, y,
z and assume that the plasma is stratified along z-axis (i.e. gravity
acceleration can be written as g = �6eI , where eI is the unity vector
of I-axis).

The non-adiabatic processes in our model are described by the
heat-loss function &(d,)) = !(d,)) � � (d,)), which is the di�er-
ence between radiative cooling ! (d,)) and heating � (d,)). The
radiative losses ! (d,)) in the optically thin plasma generally can be
expressed as the power-law function:

! (d,)) = kd) U, (5)

wherek andU are piecewise constants depending on the temperature.
The values of these constants can be calculated with the help of CHI-
ANTI atomic database (Del Zanna et al. 2021). The use of optically
thin radiative cooling is quite reasonable for coronal or almost coro-
nal conditions (where the “coronal approximation” of radiation loss
rates as functions of temperature and density for a solar mixture of
elements is applicable with su�ciently high accuracy (Athay 1986)).
This approach can be also extended to modelling the processes in
the upper chromosphere (Carlsson & Leenaarts 2012; Athay 1986).
In turn, to model the photospheric radiation, one should solve the ra-
diation transfer equation (Mihalas & Mihalas 1984). However, some
attempts are made to extend the power-law radiative cooling function
to the lower temperature regions, such as partially ionised plasmas
in prominences up to ) = 6000K (see e.g. Ibañez & Ballester 2022,
and the references therein). We also recommend an up-to-date re-
view concerning the modelling of radiation processes in the solar
atmosphere (Leenaarts 2020).

The heating rate � (d,)) is usually modeled by the power depen-
dence on the thermodynamic parameters of the plasma (Rosner et al.
1978b; Dahlburg & Mariska 1988; Ibanez S. & Escalona T. 1993):

� (d,)) = ⌘d0)1 , (6)

where ⌘ is a constant calculated in order to balance cooling under
steady state conditions (� (d0,)0) = ! (d0,)0)); 0 and 1 are con-
stants determined by a specific heating mechanism.

Specific heating mechanisms (e.g., heating by coronal current dis-
sipation, heating by Alfvén mode/mode conversion, etc.) written in
the form of power functions of thermodynamic quantities were intro-
duced by Rosner et al. (1978a). These heating mechanisms expressed
in the form of power functions of temperature and density with pa-
rameters 0 and 1 can be found in Ibanez S. & Escalona T. (1993)
(the unit of heating function in this work is ergs cm�3 s�1, while in
the current paper, it is ergs g�1 s�1). However, the study of Kolotkov
et al. (2020) has shown that the thermal mode in the considered heat-
ing mechanisms is always unstable in the case of suppressed thermal
conduction and can be either stable or unstable in the case of finite
conduction. The acoustic mode also can be stable or unstable. Thus,
it was proposed to constrain the values of parameters 0 and 1 in or-
der to ensure the stability of the solar atmosphere, and the calculated
characteristics of acoustic waves (period, propagation velocity, de-
cay time) corresponded to observational data (Kolotkov et al. 2020;

Kolotkov & Nakariakov 2022). Similar constraints obtained with var-
ious observational data and analytical models, taken together, will
probably allow us to narrow the range of admissible values of 0 and
1 and to identify the possible mechanisms that cause the obtained
dependence of the heating power on density and temperature.

In this paper, we propose an analytical model that relates the
parameters of the heating function 0 and 1 to the height profiles of
temperature, pressure, and density (see Section 3).

3 STATIONARY STATE

To analyze the properties of AGW, first, we should specify the sta-
tionary state in the plasma under consideration. Due to the fact that
the analyzed plasma is the non-adiabatic one, the thermal balance
requires special attention.

The thermal balance implies that the right-hand side of Eq. (3)
should equal 0. In general, the heating � (d,)) and radiation cool-
ing ! (d,)) can be locally unbalanced (&(d,)) < 0). In this case,
the local excess of heat will be transferred to other regions by the
thermal conduction in order for another steady state to occur. Similar
mechanism together with thermal instabilities is considered to be a
possible reason for the coronal rain formation (Antolin 2020; �ahin
& Antolin 2022). The temperature perturbation of a steady state
resulting from a certain initiating event (e.g., growth of the compres-
sion perturbation caused by thermal instability) in some part of the
coronal loop propagates throughout the loop due to thermal conduc-
tion and gravitational forces. Moreover, under some conditions, the
loop state can become continuously evolving even though the heating
remains stationary. The plasma is constantly adjusting to imbalances
in the energies and forces, essentially searching for a nonexistent
equilibrium (Klimchuk 2019). This e�ect is known as thermal non-
equilibrium or TNE cycle (Antolin & Froment 2022; Antiochos &
Klimchuk 1991). In the current research, we assume that there is a
stable state of equilibrium with heating and cooling balancing each
other (&(d,)) = 0) and there are no constant energy fluxes due to
thermal conduction. This prevents e�ects such as coronal rain and
TNE cycles from occurring and allows a stationary height profile of
temperature, density, and pressure to exist.

Therefore, considering thermal balance, we will assume that heat-
ing and cooling rates balance each other (! (d0,)0) = � (d0,)0), or
& (d0,)0) = 0) in the stationary state. We will also consider the
cooling and heating rates in forms (5) and (6), respectively. Thus, the
local thermal balance can be written in the form shown below:

kd0)
U
0 = ⌘d00)

1
0 . (7)

As will be seen later the heating and cooling taken in the form
of power law functions together with the condition of local thermal
equilibrium & (d0,)0) = 0 lead to the linear dependency of temper-
ature with height. In this case, the thermal conduction term vanishes
and the condition of equality to zero of the right-hand side of Eq. (3)
is satisfied.

Considering Eq. (7) and excluding temperature with the help of the
equation of state (4), one can obtain the following relation between
gas-dynamic pressure and density:

%0 = ⇠d
W&
0 , (8)

where

W& =
0 � 1 + U � 1

U � 1
. (9)

For the stationary state to exist, not only the thermal balance but
also the mechanical balance have to take place, which implies the

MNRAS 000, 1–10 (2015)
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equilibrium between gravitational force and the pressure gradient.
Assuming the previously mentioned geometry, the mechanical equi-
librium can be written as follows:

3%0

3I
+ d06 = 0. (10)

Thus, we have the stationary state defined by thermal (8) and me-
chanical (10) balance conditions. Using these equations, we can now
proceed to determine the height distribution of plasma parameters.
Let us assume that in the considered temperature range U = 2>=BC1,
and some heating mechanism is present in the medium such that
0 = 2>=BC2, 1 = 2>=BC3. Hence the index W& = 2>=BC must be also
constant.

In light of the foregoing, substitution of the pressure-density re-
lation (8) and subsequent integration of Eq. (10) with respect to the
coordinate I gives us the distribution of equilibrium pressure with
height (11). Then, using relation (8) and equation of state (4), one
can obtain the height distribution of density (12) and temperature
(13).

%0 (I) = %⇤

✓
1 �

I(W& � 1)
�W&

◆ W&
(W&�1)

, (11)

d0 (I) = d⇤

✓
1 �

I(W& � 1)
�W&

◆ 1
(W&�1)

, (12)

)0 (I) = )⇤

✓
1 �

I(W& � 1)
�W&

◆
, (13)

where � = %⇤
6d⇤

= :⌫)⇤
<6 is the characteristic gravitational spatial

scale, %⇤, d⇤, )⇤ are equilibrium pressure, density, and temperature
at I = 0, respectively. Within the framework of this work, one may
choose as level I = 0 the height in the solar atmosphere for which the
parameters of plasma (temperature, pressure, and density) are speci-
fied (e.g using data from EUV or multi-frequency radio emission, the
data from Interface Region Imaging Spectrograph (IRIS), or white
light measurements.

It is clearly seen that considered plasma non-adiabaticity leads
to the previously mentioned linear dependency of temperature with
height (13). Note that the slope of the line is completely defined by
the heating/cooling rates and their dependence on temperature and
density. Moreover, the heating/cooling processes a�ect the density
and pressure profiles making them generally power-law rather than
exponential. Thus, the observed non-exponential profile of density
in the solar atmosphere can be attributed to non-adiabatic e�ect and
furthermore can be used as a seismological tool to define possible
corona heating mechanism.

In other words, the observed density profile can be fitted by func-
tion (12), finding the value of W& . This, according to expression (9),
allows us to determine the relationship between the parameters 0 and
1. This relation allows us to determine the range of possible values of
0 and 1. Such estimates may prompt an idea of what mechanisms may
be responsible for the resulting heating dependence on temperature
and density.

It is important to note that this approach will be viable if the sta-
tionary state defined by expressions (11) – (13) is stable. This refers
primarily to thermal instabilities. Thus, the conditions of isochoric
((m&/m))d > 0) and isobaric ((m&/m))d � d0 (m&/md)) /)0 > 0)
stability introduced by (Field 1965) must be fulfilled. These condi-
tions of isochoric and isobaric stability for cooling (5) and heating

(6), written in the form of power functions of density and temperature
take the following form, respectively:

U � 1 > 0, (14)

0 � 1
U � 1

> �1. (15)

Stability of the stationary state under conditions of isentropic in-
stability ((m&/m))d + d0 (m&/md)) /(W�1))0 < 0) should be inves-
tigated in more detail. On the one hand, in a homogeneous medium,
it does not a�ect the equilibrium state itself, although it leads to
the emergence of quasi-periodic acoustic structures (Zavershinskii
et al. 2019), which subsequently evolve into shock waves (Molevich
& Riashchikov 2021). On the other hand, the isentropic instability
condition implies a decrease in temperature height faster than the
adiabatic gradient which is the instability condition for the gravity
mode of AGWs (Brasseur & Jacob 2017). Under these conditions,
one can expect the emergence of convective flows, which will dis-
rupt the state of equilibrium. Therefore, we suppose that the condition
of isentropic stability (16), which is simultaneously a condition of
stability of the gravity mode, should also be satisfied:

0 � 1
U � 1

< W � 1. (16)

The regions of thermal stability on 0 � 1 diagram can be found in
Kolotkov et al. (2020).

Another limitation of the approach described in this paper is related
to the fact that the assumption of constancy of parameters 0, 1,
U in heating (6) and cooling (5) functions and, as a consequence,
constancy of W& (9) in these formulas is used when deriving the
height profiles of pressure, density, and temperature (11) – (13).
These assumptions may be applicable in some relatively small region,
for example, so that the coe�cient U in the radiative cooling function
(5) is constant in this region. In addition, it is necessary to estimate
the influence of thermal conduction in regions with temperature
nonlinearities, since it will begin to influence the stationary state in
Eq. (3) in contrast to the linear height temperature profile.

Nevertheless, the power-law pressure (11) and density (12) profiles
can become exponential in the non-adiabatic plasma:

d0 (I) = d⇤4�I/� , %0 (I) = %⇤4�I/� . (17)

Such profiles imply temperature profile to be isothermal, which ac-
cording to Eqs. (11) – (13) requires W& = 1. Furthermore, according
to Eq. (9), the parameter 0 in the heating function (6) have to be equal
unity (0 = 1) in the isothermal plasma. Thus, the quantity 1 becomes
the only free parameter in the heating function (6) in this case. Note
that if the atmosphere is isothermal and isochorically stable (14),
inequalities (15), (16) are always satisfied.

In what follows, we will consider how the thermal misbalance af-
fect dispersion properties of waves under assumption of the isother-
mal temperature profile.

4 ISOTHERMAL CASE

4.1 Dispersion relation

Let us analyze the wave properties in a gravitationally stratified
isothermal atmosphere taking into account heating and cooling pro-
cesses. To do this, we can apply the perturbation theory and seek a

MNRAS 000, 1–10 (2015)
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solution of Eqs. (1) – (4) using following substitution:

b (I, G, C) = b0 (I) (1 + b1 (I, G, C)). (18)

Hereinafter, the quantity b means any parameter describing the
state of the plasma. Subscript “0” means the unperturbed plasma
state. The quantity b1 is for relative perturbation solution. Assuming
the wave propagating in the x-z plane (i.e. considering the wave-
vector as k = :GeG + :IeI), we can use following harmonic wave
solution:

b1 (I, G, C) = eb1 4G? {8:GG + 8:I I � 8lC} . (19)

where, eb1 is the relative amplitude of the wave, and l is the wave
frequency.

In Eq. (18), we adhere to the chosen geometry and consider the
equilibrium parameters as a functions of the vertical coordinate only.
Thus, we can define pressure and density gradients in the isothermal
atmosphere with)0 = 2>=BC and d0 (I), %0 (I) determined by Eq. (17)
as follows:

3d0

3I
= � 1

�
d0 (I),

3%0

3I
= � 1

�
%0 (I).

Non-adiabatic processes deserve special attention in the context
of the linearization of Eqs. (1) – (4). Since heating and cooling
processes depend on density and temperature, their influence on the
propagating perturbations is determined by derivatives of function
&(d,)) with respect to d and ) . In our analysis, we assume that for
any equilibrium temperature )0 (I)
m&

m)
|) =)0 (I) = 2>=BC.

The derivative of &(d,)) with respect to d can be found from
the following considerations. In isothermal atmosphere, W& = 1 that
implies 0 = 1 in the cooling function. Hence, &(d,)) = d(k) U �
⌘)1). Since the derivative of the heat-loss function & is taken at
equilibrium values of temperature ) = )0 and density d = d0, by
virtue of Eq. (7)

m&

md
= 0.

Considering the mentioned above, linearization procedure applied
to Eqs. (1) – (4) using substitution (18) – (19) gives us the following
set of equations

�8led1 � 1
�

e+I1 + 8:Ie+I1 + 8:Ge+G1 = 0, (20)

ld0e+G1 = :G%0 e%1, (21)

8le+I1 = �
✓

1
�

� 8:I

◆
�6e%1 + ed16, (22)

8le)1 � (W � 1)
 
8led1 +

e+I1
�

!
= � 1

g+
d0)0e)1, (23)

e%1 = ed1 + e)1. (24)

Here, g+ is the characteristic time associated with the thermal
misbalance:

g+ =
⇠+

m&
m) |) =)0 (I)

. (25)

Simplification of Eqs. (20) – (24) gives us the dispersion relation
in form:

l2 � 22
(

⇣
:2
G + :2

I

⌘
� 8W6:I +

(W � 1)62:2
G

l2
=

=
�8
lg+

⇣
l2 � 22

)

⇣
:2
G + :2

I

⌘
� 86:I

⌘
, (26)

where 22
) = :⌫)0/< is the square of isothermal sound speed and

22
( = 22

) W is the square of sound speed.
Let us transform Eq. (26) using substitutions similar to Priest

(2014), namely :
0
I = :I + 8/2�. From geometry of problem, one

can see that :2
G + :

02
I = :

02 and :2
G = :

02B8=2\, where \ is the angle
between :

0
I and :

0
. Then, we can rewrite dispersion relation (27) for

AGW in the thermally active plasma as follows:

l2 � 22
(:

02 � #2
( + #2

l2
22
(:

02B8=2\ =

=
�8
lg+

⇣
l2 � 22

) :
02 � #2

(&

⌘
= 0. (27)

Here, #( = 2(/2� is the acoustic cut-o� frequency and # =
6
p
W � 1/2( is the Brunt–Väisälä frequency.

One may notice that the expression on the right-hand side of
Eq. (27) describes the contribution of thermal misbalance to the
dispersion properties of AGW. Analysis of the derived equation re-
veals that the introduced parameter #(& has the physical meaning
of acoustic cut-o� frequency in the medium with powerful processes
of heating and cooling (strong thermal misbalance):

#(& =
2)
2�

. (28)

It is also worth to mention that obtained dispersion equation (27)
reduces to the well-known Eq. (29) for AGW (see Priest 2014) in
the case of thermal misbalance absence (g+ ! 1). The last implies
that the expression in parentheses on the right-hand side of Eq. (27)
tends to 0:

l2 � 22
(:

02 � #2
( + #2

l2
22
(:

02B8=2\ = 0. (29)

4.2 The significance of thermal misbalance in the description of
acoustic-gravity waves

The analysis of Eq. (27) shows that the dispersion properties of AGW
significantly depends on dimensionless parameter j:

j =
2) g+
�

. (30)

It can be interpreted as the ratio of characteristic length of thermal
processes to the characteristic gravity scale.

The case when j � 1 implies that the thermal misbalance a�ects
waves on scales much larger than characteristic gravity scale �. In
other words, the e�ect of thermal misbalance is relatively weak, and
the wave dynamics is primarily determined by gravity. This means
that dispersion properties of AGW can be fairly accurately described
by well-known relation (29).

The opposite case when j ⌧ 1 implies that the thermal misbal-
ance a�ects the waves at scales much smaller than gravity scale �.
Thus, the e�ect of thermal misbalance will be clearly evident in the
properties of the waves in this particular case, and the dispersion
properties of AGW are determined by more general equation (27).

In the case when j ⇡ 1 the e�ects of gravity and thermal misbal-
ance are of the same order.

Since this parameter j is illustrative in determining the relative
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Figure 1. Dependence of the dimensionless parameter j on temperature for
several heating scenarios. The colored lines correspond to di�erent form of
the heating model (6) with 0 = 1 and 1, given in the legend of the plot. The
dashed lines indicate negative values of j. The gray line corresponds to the
value j below which gravitational waves become non-propagating over the
entire spectrum (see Eq. 32) for details).

PS (no misbalance)

PSQ

b = -2

b = -3

b = -4

b = -5

104 105 106 107 108
5

10

50

100

500

T, K

P c
ut
,m
in
ut
es

Figure 2. Dependence of acoustic cut-o� period on temperature for several
heating scenarios. The gray solid line indicate the cut-o� period %( = 2c/#(

in the plasma without thermal misbalance. The gray dashed line corresponds
to period %(& = 2c/#(& . The variations of the cut-o� period with respect
to the form of the heating model are shown by colored lines.

contribution of the e�ects of gravity and thermal misbalance, it is
reasonable to estimate its value in the solar atmosphere. Certainly, its
value will depend on the specific type of heating and cooling func-
tions. The latter is set in form (5) with parametrization calculated
using CHIANTI database (Del Zanna et al. 2021). The parameters
in the heating function (6) are chosen so that the stationary state is
isothermal and the medium is thermally stable over the vast tem-
perature range. The first condition requires 0 = 1 and the second
condition is mostly satisfied with negative 1.

The dependence of the parameter j on temperature ) for several
arbitrary values of 1 in heating function (6) is plotted in Fig. 1. One
can see that j ⌧ 1 in the temperature range ) < 2 MK and j ⇠ 1 for
temperatures 2 MK < ) < 10 MK. It means that the e�ect of thermal
misbalance on AGW is more important or at least as important as
the e�ect of gravity for almost all feasible temperatures in the solar
atmosphere. Their dispersion properties are therefore to be described
by relation (27) rather than by usual relation (29).

Note that in some temperature ranges shown in Fig. 1, the j
values are negative (see dashed lines). This is due to the fact that
in these cases, the thermal misbalance will lead to the amplification
of compressional waves. Therefore, these temperature ranges are
beyond the scope of our consideration.

Analysis of dispersion relation (27) also shows that thermal mis-
balance leads to a decrease in the acoustic cut-o� frequency (increase
in the cut-o� period) at j . 1. Fig. 2 shows that this increase is noted
in di�erent heating scenarios up to a temperature of 10 MK, which
also indicates the importance of thermal misbalance in the dynamics
of acoustic waves over a large temperature range.

4.3 Dispersion properties of acoustic-gravity waves in a
medium with thermal misbalance

4.3.1 Acoustic mode/Slow mode

Dispersion relation (27) is a 4th degree equation with respect to
l, so it can be solved analytically. However, this solution, given
the complex coe�cients, is di�cult to analyze. So, we illustrate
this solution for acoustic modes for di�erent regions of the solar
atmosphere.

In our calculations for slow modes in the solar corona, we use
typical equilibrium temperature )0 = 1.75 MK from Roberts (2019)
and the mean molecular weight ` = </<� = 0.6. Calculation of
heating and cooling is done in the same way as in the previous para-
graph. The calculation of real part of frequency l and characteristic
damping time (%3 = 1/�<(l)) over real wavenumber : for solar
corona conditions is shown in Fig. 3.

One can see from Fig. 3 that the graphs corresponding to the e�ect
of thermal misbalance lie below the graph without it. This always
occurs in the isothermal atmosphere (i.e., when W& = 1). Analy-
sis of dispersion relation (27) shows that acoustic cut-o� frequency
can decrease down to #(& at j ⌧ 1 that is

p
W times smaller than

traditional cut-o� frequency #( in the medium without thermal mis-
balance. At j ⇠ 1, the acoustic cut-o� frequency is between #(
and #(& . Our estimations for di�erent heating scenarios show that
the thermal misbalance is su�ciently powerful to decrease acous-
tic cut-o� frequency (increase cut-o� period) by

p
W in almost all

temperature ranges up to 10 MK (see Fig. 2).
Also, note that the slope angle of di�erent graphs corresponding

to the case of thermal misbalance may di�er for certain wavelength
regions (Fig. 3a). This is the result of dispersion of phase speed
caused by both thermal misbalance and gravity.

Another e�ect of thermal misbalance is an additional damping
of slow waves (Kolotkov et al. 2019). Our calculations for di�erent
heating mechanisms show a characteristic damping time of slow
waves of 5-10 minutes (Fig. 3b). That is, the damping time coincides
in order of magnitude with the characteristic periods of the observed
waves (Nakariakov et al. 2019).

Summarizing, one can say that thermal misbalance is indeed im-
portant e�ect for wave dynamics in solar corona and chromosphere
to take into account. However, due to the high temperature of the
solar corona and, consequently, the very large gravitational height
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Figure 3. Dependence of (a) real part of frequency l and (b) characteristic damping time of acoustic waves on wavenumber : in an isothermal plasma with
thermal misbalance under solar coronal conditions. Calculations are made for temperature ) = 1.75 MK and mean molecular weight ` = 0.6.
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Figure 4. Dependence of (a) real part of frequency l and (b) characteristic damping time of acoustic waves on wavenumber : in an isothermal plasma with
thermal misbalance under chromospheric conditions. Calculations are made for temperature ) = 10, 000 and mean molecular weight ` = 0.6.

�, the characteristic scales at which one must account for gravity
and thermal imbalance simultaneously are beyond the size of the
medium. For most applications in the solar corona, it is su�cient to
consider thermal misbalance only.

In the photosphere, on the contrary, such consideration may be
necessary due to its low temperature and relatively small gravita-
tional height �. The description of heating and cooling functions
in form (6), (5) can be applied to the photospheric/chromospheric
conditions using some strong assumptions (Ibañez & Ballester 2022;
Athay 1986), since the optically thin radiation becomes less dom-
inant. Then, based on the analytical results obtained above and on
the extension of the radiative cooling function, we can conclude
that the regime with relatively powerful heating and cooling pro-
cesses (j  1) may take place in the photosphere. Estimations made
with our simple model for the isothermal atmosphere with photo-
spheric conditions (with temperature )0 = 5350K and mean molecu-
lar weight ` = 1.27) show the increase of the period of waves above
which the waves become non-propagating from 210 s up to 270 s in
the j ⌧ 1 regime (Fig. 5). Nevertheless, this result primarily means
that it makes sense to consider the influence of thermal processes on

the properties of waves in the photosphere with a more appropriate
model, taking into account the radiative transfer equation.

4.3.2 Gravity mode

Analysis of dispersion relation (27) shows that thermal misbalance
also significantly a�ects the gravity waves. It is a mode primarily
driven by buoyancy force. The mechanism of this force is illus-
trated by the oscillation of the blob of plasma near an equilibrium
state. The blob is displaced a distance XB (vertical displacement is
XI = XB cos \). As a result of changes in the background thermo-
dynamic parameters, the density and pressure in the blob itself also
change to be in a state of pressure equilibrium with its surround-
ings. Such considerations lead to the dispersion relation for internal
gravity waves l2 = #2 sin2 \. Compressibility and buoyancy, acting
together, slightly modify the properties of the gravity mode but in
the limit l ⌧ :

0
2B their dispersion relation is reduced to the disper-

sion relation for internal gravity waves. The account of the thermal
misbalance should lead to a change in the blob oscillation frequency
because the change in density and temperature when it is displaced

MNRAS 000, 1–10 (2015)



8 D. S. Riashchikov et al.

No misbalance

Misbalance

0 2 4 6 8 10

3

4

5

6

7

8
0.70.80.911.52351050

80

100

150

200
250

k, 10-8 cm-1

R
e(
�
),
10

-
2
s-
1

�, Mm

Pe
rio
d,
s

NS

NSQ

Figure 5. Estimated change in the dependence of real part of frequency
'4 (l) on the wave number : and cut-o� frequency under the influence of
thermal misbalance in photosphere assuming an isothermal atmosphere and
powerful heating and cooling processes (j ⌧ 1).

�
10 2 0.8 0.7 0.6

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

kH

R
e(
�
)/
N
si
n(
�)

Figure 6. Dependence of the real part of the frequency of the gravity waves
on the dimensionless wave number at di�erent j.

along XB will cause a change in the heating and cooling power, which
in turn will lead to a change in the thermodynamic parameters of this
blob. The study of the dispersion relation (27) at : ! 1 shows that
the frequency of oscillations of gravity waves will be determined by
the following expression:

l>B2 =

s
#2B8=2\ � 1

4g2
+ W2

= #

s
B8=2\ � 1

4j2W(W � 1)
. (31)

The obtained relation can be interpreted as an analog of the
Brunt–Väisälä frequency in a plasma with thermal misbalance. If
the e�ect of thermal misbalance in relation to gravity is su�ciently
weak (g+ , j ! 1), then frequency l>B2 reduces to # sin \, which
coincides with that for plasma without thermal misbalance. The de-
crease of j corresponding to the increase of the thermal misbalance
impact in relation to gravity leads to the decrease ofl>B2 (see colored
lines in Fig. 6) down to 0 (see purple line in Fig. 6)).

Moreover, the thermal misbalance can not only reduce the fre-

quency of oscillations of gravity waves but also make it imaginary. It
means that gravity waves can become non-propagating (see Fig. 6) in
a medium with su�ciently powerful processes of heating and cooling
(low j). One can derive from Eq. (27) that gravity waves become
non-propagating at any angles at

j  1

2
p
W(W � 1)

. (32)

For coronal plasma with W = 5/3, this condition transforms to
j . 0.47 (represented by the gray line in Fig. 1). One can see
from Fig. 1 that in isothermal plasma gravity waves behave as non-
propagating damped perturbations at temperatures below 2 MK.

5 DISCUSSION AND CONCLUSIONS

In the current research, we have investigated the joint e�ect of gravity
and thermal misbalance on the plasma state and on the dynamics of
AGW analytically. We use the well-known power-law model of the
optically thin radiation (5) (e.g., Del Zanna et al. 2021) and assume
that the heating mechanism is some general power-law function (6)
as well. Such an assumption makes it possible to obtain a fairly large
set of results and implications that may be of interest in the context
of coronal and MHD-seismology.

To begin with, let us discuss the results concerning the equilibrium
state of the plasma. It follows from our analysis that heating (6) and
cooling (5) given in the form of power-law functions imply generally
linear dependency of temperature with height (see Eq. (13)). More-
over, the non-adiabatic processes a�ect not only temperature but also
the density and pressure profiles making them generally power-law
rather than exponential (see Eqs. (11), (12)). It is important to note
that the slope of the density, temperature, and pressure profiles are
completely determined by the form of the radiation loss and heating
functions. In Eqs. (11) - (13), the contribution of these non-adiabatic
functions is represented using the exponent W& (9). The relation be-
tween the non-adiabatic processes and height profiles introduces an
additional approach to obtaining the seismological constraints on the
coronal heating mechanism.

Schematic procedure is as follows. Firstly, one has to define the
height profiles of the coronal plasma. The height density and tem-
perature profiles of the solar corona can be obtained using di�erent
techniques including forward modeling EUV Emission Observed by
SDO/AIA (see Pascoe et al. 2019, for details), the Interface Region
Imaging Spectrograph (IRIS) (Kayshap et al. 2018), multi-frequency
radio emission (Mercier & Chambe 2015) or white light measure-
ments (Esser et al. 1999). In general, the height profiles may vary
from exponential form. In this case, the non-exponential profile can
be fitted by the power-law expressions (11) – (13) allowing to specify
the exponent W& (9). The latter is defined by the cooling rate expo-
nent U, and heating rate exponents, namely, 0 and 1. Assuming the
radiation losses to be a verified function (see e.g. Del Zanna et al.
2021), we consider U as a known parameter. Thus, using the fitted
values of W& , we obtain the equation, which allows us to determine
the constraints on the parameters 0, 1 of the heating function (6).
The results of such application is of interest in the context of compar-
ison with the constraints on the coronal heating model (parameters
0, 1) obtained using slow wave observations (Kolotkov et al. 2020;
Kolotkov & Nakariakov 2022; Kolotkov et al. 2023).

The non-adiabatic processes a�ect not only the plasma state but
also the compressional perturbations, namely, AGW, modifying their
dispersion properties. The dispersion relation for AGW obtained us-
ing the assumption of isothermal atmosphere has the form of Eq. (27).
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Here, we consider two main sources of dispersion, which are thermal
misbalance and gravitational stratification. The characteristic tem-
poral/spatial scales, where the dispersion e�ect is most pronounced,
are di�erent for these processes. In order to define for which temper-
ature range a given e�ect will be the primary one, we introduced the
dimensionless ratio j (30). Using the parametrization of the radia-
tion loss function (5) calculated on the basis of CHIANTI database
(Del Zanna et al. 2021), we obtain the dependence of j on tempera-
ture for several heating scenarios (see Fig. 1). The heating scenarios
have been chosen in such a way that compressional waves are stable
(decaying) over the vast temperature range considered. Stable state
corresponds to �<(l) < 0 in dispersion relation (27) (solid lines in
Fig. 1). It follows from the obtained plot that the thermal misbalance
is the primary dispersion source for AGW for temperatures) < 2 MK
and comparable to gravity e�ect for the range 2 MK < ) < 10 MK.
Thus, one may conclude that the consideration of thermal misbal-
ance is quite important for the problems of wave propagation in the
stratified solar atmosphere.

Next, let us discuss how the non-adiabatic processes a�ect the
properties of acoustic waves in the stratified isothermal plasma. Our
calculations reveal that the thermal misbalance increases the periods
of waves, which can propagate in the solar atmosphere (see Figs. 3a,
and 5). For considered coronal plasma temperature )0 = 1.75 MK,
the variations in periods are 10 � 30 % depending on the operating
heating mechanism and considered wavenumber (see Fig. 3a). The
greatest variations concern longer waves. A similar e�ect can also
take place for photospheric conditions (see Fig. 5). However, the last
conclusion is of limited applicability. Although photospheric plasma
can be assumed to be ideal (Roberts 2019) and optically thin (Lykins
et al. 2013), these are still quite rough assumptions.

Also, the thermal misbalance expectedly introduces damping (or
amplification) in the gravitationally stratified plasma, as in the uni-
form (Kolotkov et al. 2019) and magnetically structured plasma
(Agapova et al. 2022). As we mentioned previously, in this paper
we have focused on the thermal misbalance regime (j ⌧ 1), which
implies the attenuation of compression waves over a wide range of
temperatures. The damping periods of acoustic waves calculated for
coronal conditions are shown in Fig. 3b. The obtained periods are
of 5-10 minutes and coincide in order of magnitude with the char-
acteristic periods of the observed waves (Nakariakov et al. 2019).
It should be noted that in the case of positive values of the power
index "1" in the heating model (6), the regimes with instability of
entropy and acoustic mode can take place. The acoustic instability
regime allows formation of QPPs (Zavershinskii et al. 2019) or even
autowave shock pulses (Zavershinskii et al. 2020; Chin et al. 2010;
Molevich & Riashchikov 2021). The last issues are of interest in the
context of formations of density perturbation by standing shock at
acoustic cut-o� period (Pylaev et al. 2017).

Speaking of wave/oscillation observations, the influence of ther-
mal misbalance on the acoustic cut-o� period merits special atten-
tion. Our analysis reveals that for the solar atmosphere cooler than
) < 2 MK, the assumed cut-o� period should be increased by

p
W

times (about 30%). This issue is of interest of ⇠ 90 min oscillation
indicated by Viall et al. (2010); Viall & Vourlidas (2015); Pylaev
et al. (2017). The estimated plasma temperature ) ⇠ 1 MK implies
the cut-o� period %2DC ⇠ 70 min calculated assuming the usual
expression for the plasma without thermal misbalance. In turn, the
introduced increased period value #(& (28) gives observed⇠ 90 min
(see Fig. 2). It should be noted that generally, the cut-o� period lies
between the #(& (28) and the usual value for plasma without thermal
misbalance #( (see Fig. 2 for details).

We obtain that non-adiabatic processes also significantly a�ect the

dynamics of gravity waves. In particular, for the considered regime
with stability/decaying of entropy and acoustic waves (�<(l) < 0),
the thermal misbalance leads to the decay of gravity waves. How-
ever, as well as acoustic waves, gravity waves may become unstable
(�<(l) > 0) for some heating mechanisms, which remained be-
yond our consideration (parameters 0, 1 in Eq. (6) a�ect dispersion
properties through parameters (9), (25) in dispersion relation (27)).

In addition, the thermal misbalance in a stable isothermal at-
mosphere reduces the maximum oscillation frequency (analog of
Brunt–Väisälä frequency) of gravity waves. One may notice from
results shown in Fig. 6 that the increase of role of non-adiabatic
processes (decrease of j (30)) leads to the decrease of maximum
oscillation frequency.

And the last but not least, the gravity waves can become non-
propagating waves in the thermally active plasma. The above men-
tioned decrease of j (30) leads to the spectrum limitation (see Fig. 6).
We show that the gravity waves become non-propagating at any an-
gles if j satisfy condition (32), which takes the form j . 0.47 for
coronal conditions. According to the results shown in Fig. 1, such
condition is satisfied for temperatures )0 . 1 MK. This result in-
dicates that analysis of propagating gravity waves in non-adiabatic
plasma requires further investigation and, in particular, under the
conditions of non-isothermal height profile.

The results presented in this paper are obtained using some as-
sumptions. First, the medium is assumed to be fully ionized and the
radiation is optically thin. This limits the applicability of the model to
temperatures above about 104 K. For regions of the solar atmosphere
with lower temperatures, the considered model should be applied
with caution and for qualitative rather than quantitative description.
A quantitative description requires a more complete model that takes
into account partial ionization and radiation transport. Second, the
height profile is assumed to be stable, and there are no large-scale
flows. For this, at least the medium must be thermally stable, i.e.,
inequalities (14) – (16) must be satisfied. For a more accurate con-
sideration it is also required to further investigate the e�ects of the
magnetic field and thermal conduction. In particular, thermal conduc-
tion will have a large e�ect on the steady state at large nonlinearities
of the temperature profile. Additional corrections will be made by
the dependence of the thermal conduction coe�cient on temperature,
which is important in an atmosphere with a relatively large tempera-
ture gradient, as well as the dependence of gravitational acceleration
on height, which takes place in the solar corona because of its large
size on the order of several solar radii.

As a final matter, it may be noted that the theory introduced in
the current work can find its application not only for the analysis of
waves in the atmosphere of the Sun but also in the stellar atmospheres
(see, e.g., Lim et al. 2022).
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